الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

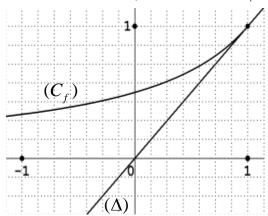
دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

اختبار في مادة: الرياضيات المدة: 04 سا و30 د

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول الموضوع الأول


التمرين الأوّل: (04 نقاط)

. C(1;1;3) و B(0;-2;2)، A(2;2;0) نعتبر النقط $\left(O;\vec{i},\vec{j},\vec{k}\right)$ و B(0;-2;2) و الفضاء منسوب إلى المعلم المتعامد والمتجانس

- . (BC) الذي يشمل النقطة A ويعامد المستقيم (P) الذي يشمل النقطة المستقيم (B)
- . x+2y-z=0 : هي (P') المستوي المحوري للقطعة $\begin{bmatrix} AB \end{bmatrix}$ ، تحقق أن معادلة ((P') هي (2
 - . بيّن أنّ المستويين (P) و (P') يتقاطعان وفق مستقيم (Δ) ، يطلب إيجاد تمثيل وسيطي له .
- (ABC) و (Δ) هي نقطة تقاطع (Δ) و (Δ) بيّن أنّ النقطة Δ 0 مرجح الجملة المثقلة (Δ 1,(B1),(C2,-12) هي نقطة تقاطع (Δ 3 مرجح الجملة المثقلة (Δ 4 من الفضاء التي تحقق: Δ 4 من الفضاء التي تحقق: Δ 4 من الفضاء التي تحقق: Δ 5 مجموعة النقط (Δ 6 من الفضاء التي تحقق: Δ 7 من الفضاء التي تحقق: Δ 8 من الفضاء التي تحقق: Δ 9 من الفضاء القط الفضاء التي تحقق: Δ 9 من الفضاء التي تحقق: Δ 9 من الفضاء التي تحقق: Δ 9 من الفضاء القط الفضاء الفضاء القط الفضاء القط الفضاء القط الفضاء القط الفضاء القط الفضاء القط الفضاء الفضاء القط الفضاء الفضاء الفضاء الفضاء الفضاء الفضاء القط الفضاء القط الفضاء الفضاء الفضاء الفضاء القط الفضاء الفضاء الفضاء القط الفضاء القط الفضاء الفضاء الفضاء الفضاء الفضاء القط الفضاء ا

التمرين الثاني: (04 نقاط)

نعتبر الدالة العددية f المعرّفة على المجال $[-\infty;1]$ ب $[-\infty;1]$ ب المعادية $[-\infty;1]$ المستوي في المستوي . $[-\infty;1]$ المنسوب إلى المعلم المتعامد المتجانس $[0;\vec{i},\vec{j}]$ ، وليكن $[0;\vec{i},\vec{j}]$ ، وليكن المعلم المتعامد المتعامد المتجانس المعاديق والمعاديق المعاديق والمعاديق وا

- $u_0=-1$ المتتالية العددية المعرّفة بحدها الأول u_0 حيث . $u_{n+1}=f\left(u_n
 ight)$ ، $u_{n+1}=f\left(u_n
 ight)$ ، $u_{n+1}=f\left(u_n
 ight)$
 - اعد رسم الشكل المقابل ثم مثّل على حامل محور الغواصل $(1 \ u_1 \ u_2 \ u_1 \ u_0 \ u_2)$ الحدود (u_n) وتقاريها.
 - . $u_n < 1$ ، n عدد طبیعي (2) برهن بالتراجع أنّ: من أجل كل عدد طبيعي
 - ادرس اتجاه تغيّر المتتالية (u_n) ثم استنتج انّها متقارية.
- $v_n = \frac{2}{1-u_n}$ ، n عدد طبیعی المعرّفة کما یلي: من أجل کل عدد (v_n) المعرّفة کما المعرّفة کما بناند (4
- . n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة v_n بدلالة عين عبارة حدها العام
 - $\lim_{n\to +\infty} u_n$ واحسب والحد العام العام u_n بدلالة واحسب عبارة الحد العام بدلالة

التمرين الثالث: (05 نقاط)

 $(O; \overrightarrow{u}, \overrightarrow{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

. $z_{\scriptscriptstyle C}=-i$ و $z_{\scriptscriptstyle B}=2+i$ ، $z_{\scriptscriptstyle A}=-1$: نعتبر النقط B ، A و B ، A

- . ABC على الشكل الأسي ثم استنتج طبيعة المثلث (1 $\frac{z_A-z_C}{z_B-z_C}$
 - A الني مركزه C ويحول B الني العبارة المركبة للتشابه المباشر C الذي مركزه
 - . S بالتشابه D بعتبر النقطة D بالنسبة الى D والنقطة D صورة D بالتشابه D
 - . E عين z_E لاحقة z_E ثم تحقق أن $z_E=1-2i$ عين z_D لاحقة
 - ب) حدّد طبيعة الرباعي ADEB.
- (B مجموعة النقط M من المستوي ذات اللاحقة M من المستوي ذات اللاحقة M

.
$$\arg(z-z_A) - \arg(z-z_B) = \frac{\pi}{2} + 2k\pi$$
 ; $k \in \mathbb{Z}$ حيث

تحقق أنّ النقطة C تنتمى الى (Γ) ، ثم حدّد طبيعة المجموعة C وأنشئها.

التمرين الرابع: (07 نقاط)

- انيا. النهايتين بيانيا: $\lim_{x \to \infty} f(x)$ ، $\lim_{x \to \infty} f(x)$ ، ثم فسّر النتيجتين بيانيا. (1
 - $\lim_{x \to +\infty} f(x)$ و $\lim_{x \to -\infty} f(x)$ احسب (پ
- - . f(3-x)+f(x)=0 و $(3-x)\in D_f$ ، D_f من x عدد حقیقي x عدد حقیقي ((3-x)+f(x)=0
 - ب استنتج أنّ $\left(C_{f}\right)$ يقبل مركز تناظر يُطلب تعيين إحداثييه.
- فر المعادلة f(x)=0 تقبل حلا وحيدا α على المجال g(x)=0 ثم استنتج أنّها تقبل حلا أخر (4 فريدا على علين حصر له.
- . (Δ) بيّن أنّ المستقيم (Δ) ذا المعادلة: y=-2x+3 مقارب مائل لـ (C_f) ، ثم ادرس وضعية (Δ) بالنسبة لـ (Δ)
 - $oldsymbol{\cdot}ig(C_fig)$ و (Δ) و ($oldsymbol{6}$
 - .]2; + ∞ [على $x \mapsto ln\left(\frac{x-1}{x-2}\right)$ أصلية للدالة $h: x \mapsto (x-1)ln(x-1) (x-2)ln(x-2)$ على]7

ثم احسب بدلالة etaمساحة الحيّز المستوي المُحدد بالمنحنى $\left(C_{f}
ight)$ والمستقيمات التي معادلاتها:

x = 3 y = -2x + 3

انتهى الموضوع الأول

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

	العلامة		عناصر الإجابة	
8	المجموع	مجزأة		

<u>.</u>					
		الموضوع الأول			
	التمرين الأوّل: (04 نقاط)				
0.50	0.50	x+3y+z-8=0:(P) معادلة المستوي (1			
01	01	. $x+2y-z=0$: هي (P') هي (2			
	0.25	و (P') و تقاطعان وفق مستقيم (Δ) لأن الشعاعين الناظمين لكل من (P) و (P') غير (P)			
		مرتبطین خطیا			
0.75		$\int x = 5t - 16$			
	0.50	$\left\{ egin{aligned} y = -2t + 8 & / t \in \mathbb{R} : (\Delta) \end{aligned} ight.$ التمثيل الوسيطي للمستقيم			
		z = t			
	0.50	$G\!\!\left(1;\!rac{6}{5};\!rac{17}{5} ight):G$ إحداثيات (4			
	0.25	(1) دنها مرجح للنقط الثلاث $C;B;A$ لأنها مرجح للنقط الثلاث $G\in (\mathrm{ABC})$			
	0.25	(2) لأن إحداثيات G تحقق جملة التمثيل الوسيطي لـ $G\in (\Delta)$			
1.75		$\{G\}$ = (ABC) \cap (Δ) نجد (2) و (1) نجد			
		مجموعة النقط:			
	0.50	$MG = OA$ تكافئ $\left\ \overrightarrow{MA} + \overrightarrow{MB} - 12 \overrightarrow{MC} \right\ = 10 \left\ \overrightarrow{OA} \right\ $			
	0.25	OA اسطح کرة مرکزها G ونصف قطرها OA			
		التمرين الثاني: (04 نقاط)			
	0.50	رسم الشكل المقابل وتمثيل الحدود u_1 ، u_2 ، u_1 ، u_2 ، u_3 و u_3 مبرزاً خطوط التمثيل (1			
0.75	0.25	u_0 u_1 u_2u_3 u_0 u_1 u_2u_3 u_n u_n u_n التخمين : المتتالية (u_n) متزايدة تماما ومتقارية			

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
المجموع	مجزأة	
0.75	0.75	. $u_n < 1$ ، n عدد طبیعي عدد طبیعي (2
0.75	0.50	. اتجاه التغير : نجد $u_n = \frac{(1-u_n)^2}{2-u_n}$ و منه المتتالية u_n) متزايدة تماما (3
	0.25	. تقارب (u_n) :المتتالية (u_n) متزايدة تماما ومحدودة فهي متقاربة
1.75	0.50	$v_{n+1} - v_n = 2 \; : \; 2$ سابية أساسها (1) المتتالية (v_n) حسابية أساسها
	0.50	$v_n=2n+1$: عبارة الحد العام
	0.50	$u_n=1-rac{2}{2n+1}:n$ عبارة u_n عبارة (ب
	0.25	$\lim_{n\to +\infty} u_n = 1$ النهاية
		التمرين الثالث :(05 نقاط)
01	0.50	$rac{z_A-z_C}{z_B-z_C}=rac{1}{2}e^{irac{\pi}{2}}$ الشكل الاسي: (1
	0.50	$\left(\overrightarrow{CB};\overrightarrow{CA} ight)$ $=$ $\frac{\pi}{2}$ لان C قائم في ABC قائم في ABC طبيعة المثلث
01	01	. $z'=rac{1}{2}i\;z-rac{1}{2}-i\;:\;S$ العبارة المركبة للتشابه المباشر (2
1.50	0.50	$z_D = -2 - 3i$: D اً) لاحقة (أ (3
	0.25	$z_E = 1 - 2i$ التحقق أن:
	0.75	. ب $ADEB$ معين $ADEB$ معين
	0.25	$rg\left(rac{z_C-z_A}{z_C-z_B} ight)=rac{\pi}{2}:(\Gamma)$ التحقق أنّ النقطة C تنتمي الى (4
		طبيعة المجموعة (Γ) :
01.50	0.25	$(\overrightarrow{MB}; \overrightarrow{MA}) = \frac{\pi}{2} + 2\pi k / k \in \mathbb{Z}$ معناه $\arg\left(\frac{z - z_A}{z - z_B}\right) = \frac{\pi}{2}$
	0.50	C هي نصف الدائرة المفتوحة التي حداها النقطتين B و B وتشمل النقطة Γ
	0.50	انشاء (Γ) . B 2 C

الصفحة 2 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

العلامة		عناصر الإجابة
امجموع	مجزأة ا	
		التمرين الرابع :(07 نقاط)
	2×0.25	$\lim_{x \to 2} f(x) = +\infty \lim_{x \to 1} f(x) = -\infty (1)$
1.25	0.25	$x\!=\!1\;;\;x\!=\!2\;:$ وجود مستقیمین مقاربین معادلتیهما
	2×0.25	$ \cdot \lim_{x \to +\infty} f(x) = -\infty $
	0.50	، $f'(x) = -2 - \frac{2}{(x-1)(x-2)}$ ، D_f من x من أجل كل x من أبل كل x من أجل كل x من أجل كل x من أجل كل x من أجل كل x من أبل كل أبل كل x من أبل كل أبل
		جدول تغیرات الدالة f .
01	0.50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	0.25	(3-x) اً) من أجل كل عدد حقيقي x من x من x من أجل كل عدد حقيقي x من أجل كل عدد حقيقي
01	0.50	f(3-x)+f(x)=0 ، من أجل كل عدد حقيقي x من x من أجل كل عدد حقيقي
	0.25	$A(rac{3}{2};0)$ يقبل مركز تناظر إحداثياته: $\left(C_{_f} ight)$ (ب
	0.50	$[0,45;0,46]$ على المجال $f(x)=0$ تقبل حلا وحيدا α على المجال (4
01		$f(lpha)\!=\!0$ استنتج أنها تقبل حلا أخر eta :ادينا eta :ادينا
	0.25	$\beta = 3 - \alpha$
	0.25	$2.54 \le \beta \le 2.55 : \beta$
	0.50	ہ ہوریہ مائل لے $\binom{C_f}{1}$ مقاریہ مائل کے اور (Δ) ہمقاریہ مائل کے اور (Δ) ہم اور (Δ) ہمقاریہ مائل کے اور (Δ) ہمقاریہ مائل کے اور (Δ) ہمتاریہ مائل کے اور (Δ) ہمقاریہ مائل کے اور (Δ) ہمقاریہ مائل کے اور (Δ) ہمتاریہ کے اور (Δ) ہمتاریہ مائل کے اور (Δ) ہمتاریہ کے اور کے اور (Δ) ہمتاریہ کے اور کے اور کے اور کے اور کے اور کے
01		$\lim_{x \to +\infty} [f(x) - (-2x + 3)] = 0; \lim_{x \to -\infty} [f(x) - (-2x + 3)] = 0$
		$\cdot(\Delta)$ بالنسبة لـ ال $\left(C_{f} ight)$ وضعية ونسعية المارية الم
	0.50	(Δ) يقع تحت $x<1$ لما
		(Δ) لما $x>2$ يقع فوق (Δ)
	0.25	$.ig(C_fig)$ و (Δ) و (δ) ارسم (C_f)
0.75	0.50	(Δ)

الصفحة 3 من 8

الإجابة النموذجية لموضوع اختبار مادة : الرياضيات /الشعبة : تقني رياضي/البكالوريا دورة: 2017

ä	العلام	عناصر الإجابة
مجموع	مجزأة ا	
01	0.50	اثبات أنّ الدالة: $(x-1)\ln(x-1) - (x-2)\ln(x-2)$ أصلية للدالة (7
	0.50	.]2;+ ∞ [على $x\mapsto ln\left(\frac{x-1}{x-2}\right)$
	0.50	$S = \int_{\beta}^{3} 2\ln(\frac{x-1}{x-2})dx = 2h(3) - 2h(\beta)$: حساب بدلالة β المساحة